Exponential ergodicity of the bouncy particle sampler

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Bouncy Particle Sampler

We introduce a stochastic version of the nonreversible, rejection-free Bouncy Particle Sampler (BPS), a Markov process whose sample trajectories are piecewise linear, to efficiently sample Bayesian posteriors in big datasets. We prove that in the BPS no bias is introduced by noisy evaluations of the log-likelihood gradient. On the other hand, we argue that efficiency considerations favor a smal...

متن کامل

The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method

Many Markov chain Monte Carlo techniques currently available rely on discrete-time re-versible Markov processes whose transition kernels are variations of the Metropolis–Hastingsalgorithm. We explore and generalize an alternative scheme recently introduced in the physicsliterature [27] where the target distribution is explored using a continuous-time non-reversiblepiecewise-...

متن کامل

Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression

Consider the quantile regression model Y = Xβ+σ where the components of are iid errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r ∈ (0, 1) is fixed. Kozumi and Kobayashi (2011) introduced a Gibbs sampler that can be used to explore the intractable posterior density that results when the quantile regression likelihood is combined with the usual normal/inverse ...

متن کامل

On exponential ergodicity of multiclass queueing networks

One of the key performance measures in queueing systems is the exponential decay rate of the steady-state tail probabilities of the queue lengths. It is known that if a corresponding fluid model is stable and the stochastic primitives have finite moments, then the queue lengths also have finite moments, so that the tail probability P(· > s) decays faster than s−n for any n. It is natural to con...

متن کامل

Recurrence and Ergodicity of Interacting Particle Systems

Many interacting particle systems with short range interactions are not ergodic, but converge weakly towards a mixture of their ergodic invariant measures. The question arises whether a.s. the process eventually stays close to one of these ergodic states, or if it changes between the attainable ergodic states infinitely often (“recurrence”). Under the assumption that there exists a convergence–...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2019

ISSN: 0090-5364

DOI: 10.1214/18-aos1714